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Abstract—  Recent technological advances in high-

throughput data collection allow for the study of increasingly 
complex systems on the scale of the whole cellular genome and 
proteome. Gene network models are required to interpret large 
and complex data sets. Rationally designed system 
perturbations (e.g. gene knock-outs, metabolite removal, etc) 
can be used to iteratively refine hypothetical models, leading to 
a modeling-experiment cycle for high-throughput biological 
system analysis. We use fuzzy logic gene network models 
because they have greater resolution than Boolean logic models 
and do not require the precise parameter measurement needed 
for chemical kinetics-based modeling. The fuzzy gene network 
approach is tested by exhaustive search for network models 
describing cyclin gene interactions in yeast cell cycle 
microarray data, with preliminary success in recovering 
interactions predicted by previous biological knowledge and 
other analysis techniques. Our goal is to further develop this 
method in combination with experiments we are performing on 
bacterial regulatory networks. 

 
Keywords—Gene networks, gene regulation, microarrays, 

simulation, fuzzy logic 
 
 

I.  INTRODUCTION 
 
 Technological advances in DNA sequencing [1] have 
made it feasible to obtain the entire genetic sequence 
(genome) of an organism being studied by biologists. While 
the genomes of plants and animals are generally large (108-
1010 bases, O(104) genes) and still take months and years to 
sequence, it is now possible to generate the draft genome 
sequence of a bacterium (106 bases, O(103) genes) in a 
matter of days or even hours. However, the sequence of 
genes only provides a “parts list” for the cell. Cell function 
arises from the regulatory pathways and networks of the 
genes  and their protein products: how the parts are 
assembled and work together in response to environmental 
stimuli. 
 We are now in the “Post-Sequencing” era of 
biotechnology, characterized by engineering advances 
(reviewed in [1]) such as DNA chips and microarrays for 
mRNA transcript profiling, as well as protein profiling with 
mass spectroscopy and 2-D gel electrophoresis [2]. These 
technologies allow us to observe the activity of thousands of 
genes and proteins simultaneously, and we can use them to 
study the regulatory networks of the cell as an integrated 
unit. Furthermore, new genetic technologies, such as small 
interfering RNA (siRNA) for gene suppression facilitate 
high-throughput massively parallel perturbation of 
biological systems [3]. Given the complexity of the systems 

being analyzed and the size of data sets being generated, 
biologists need a modeling and simulation framework to 
optimally design experiments and interpret results.
 Computational Hypothesis Generation. Fig. 1 shows a 
schematic of an integrated experiment and modeling 
approach for high-throughput analysis of the genomic 
regulation mediating the response of a cell to a stimulus 
(e.g. temperature, host invasion, DNA damage, intercellular 
signaling molecule). Currently, the most convenient high 
throughput measurement technologies are DNA chips and 
microarrays for mRNA expression and 2D gel 
electrophoresis and mass spectrometry for protein 
expression. Future technologies which have already been 
demonstrated as proofs of concept include proteome-wide 
protein-protein hybridization [4] and genome-wide 
transcription factor hybridization [5]. 
 
 

III.  FUZZY NETWORK MODELS 
 
 Many methods of modeling gene (and/or protein) 
networks based on expression data have been described in 
the literature. Boolean networks (e.g. [6]) are computational 
simple and thus suitable for handling both the complexity of 
biological networks and the challenge of generating and 
comparing multiple hypothetical networks as described in 
the above scheme. However, a Boolean model can not 
represent the true continuous nature of gene and protein 
levels, which are required to accurately represent the 
biological network. However, chemical kinetics based 
models (e.g. [7]) are both computationally complex and 
more importantly, sensitive to parameters that can not be 
accurately measured with inexpensive and high-throughput 
technologies. Statistical clustering methods are limited to 
describing correlation and anti-correlation between genes; 
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they can not represent complex functional relationships 
between multiple interacting genes. 
 Fuzzy logic [8] provides a mathematical framework that 
is compatible with poorly quantitative data. Furthermore, the 
language of fuzzy logic is consistent with the qualitative 
linguistic-graphical methods conventionally used to describe 
biological systems. The problem of rule set scalability is 
addressed by the union rule configuration (URC) developed 
by Combs and Andrew [9], which allows for linear growth 
in rule set complexity with both resolution and number of 
inputs at the cost of having to represent nonlinear 
relationships as “hidden layers”. In the URC scheme, each 
input-output relationship is modeled by a single-antecedent 
fuzzy relation, and the final result is obtained by an 
aggregate fuzzy OR operation. Non-scalable conventional 
fuzzy logic has previously been used to analyze microarray 
data [10], and URC fuzzy logic has previously been used to 
model the lac operon of E. coli [11]. 
 For our analysis, we use three fuzzy sets, LOW (or 1), 
MED (2), and HIGH (3) to represent the magnitude of gene 
expression, as defined in Fig. 2. Experimental data is 
projected on to the interval [-1,+1]; currently this is done for 
Log 2 expression ratios by normalizing all data by the 
maximum value. For data that shows saturation 
characteristics, alternative nonlinear and piecewise linear 
projection functions may be considered. Defuzzification is 
performed using the centroid method [7], with point set 
definitions shown in Fig. 2. 
 As in the URC scheme, the rule for each input to a node 
is evaluated separately, with the final sum of the 
membership values in 1-3 taken across all rule evaluations 
and used for defuzzification to evaluate the output at the 
node. While inputs can be non-uniformly weighted, doing so 
comes at a significant cost in computational complexity. 
Under the three set scheme, there are 27 possible rules 
describing the effect of one gene on another gene. Thus, 
given a node (gene) with N input genes affecting it, there are 
27^N possible rule combinations. 
 To further illustrate fuzzy gene networks, we assume a 
data set with three genes (G1, G2, G3) evaluated at three 
different times. 

G1 = -1.0, 0, 1.0 
G2 = -0.2, 0, 0.2 
G3 = 0.6, 0, -0.6 

 
Assuming that G3 is the node (output gene) and G1 and G2 
are the inputs in our miniature regulatory network, only one 
combination of rules on G1 and G2 exactly fit the data: 
 

G1:G3 = (3 2 1) 
G2:G3 = (3 2 1) 

 
These rules can be read as 
 
  If G1 is Low (1) then G3 is High (3) 
  If G1 is Med (2) then G3 is Med (2) 
  If G1 is High (3) then G3 is Low (1) ... etc. 

 
For real data, in general no rule combination will be an exact 
fit, and given some tolerance there will be multiple possible 
rule combinations, representing plausible hypothetical gene 
network models. We can use the fit error to rank these 
models, and use clustering schemes to find common 
structures in the models to help design experiments that can 
optimally differentiate between alternate models. (While 
under the scheme of Fig. 2 there is no inherent error in the 
fuzzification and defuzzification process, other schemes 
may result in a finite error, representing a minimum “best 
fit” tolerance.) 
 
 

IV.  YEAST CYCLIN ARRAY DATA ANALYSIS 
 
 As a proof of concept, we have used exhaustive search 
to generate fuzzy gene networks based on microarray data 
obtained for the yeast cell cycle time series by Spellman, et 
al. [12], a data set frequently used by researchers validating 
analysis methods. We focus on the network of interactions 
among yeast cyclin proteins, for which a mathematical 
model has developed [13]. Notably, gene networks obtained 
from microarray data represent both direct interactions 
between transcription factors and the genes they regulate, as 
well as indirect interactions mediated through post-
translational modifications, metabolite fluxes, and protein-
protein interactions. 
 We focus in particular on seven well-characterized yeast 
cyclins, coded by the genes CLN3, SWI5, HCT1, CDC20, 
SIC1, CLB2, and CLB5; generating hypothetical fuzzy 
networks based on assuming each as a node and the others 
as inputs. In one case, we exclude SWI5, which is known to 
be a key transcriptional factor that is itself transcriptionally 
regulated (and thus a key element of any cyclin gene 
network model), and in the other HCT1, which acts and is 
regulated post-translationally and thus only an indirect 

-1 0 1
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1 (LOW) 2 (MED)
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1 (LOW) 2 (MED) 3 (HIGH)

Fig. 2.  Fuzzification and defuzzification with experimental data on the x-
axis and evaluated membership functions on the y-axis. 
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component of a gene network. 
 To illustrate the analysis, we will focus on the fuzzy 
gene network at the CLB2 node assuming CLN3, SWI5, 
CDC20, SIC1, CLB5 as inputs. Existing biological 
knowledge for CLB2 regulation is shown in Fig. 3, based on 
direct and indirect relationships (as described in [13]). The 
best-fit (minimum RSS error) fuzzy rules to the Spellman 
data set (for cdc15 cell synchronization) were found by 
exhaustive search and are shown in Fig. 4. As these rules 
show, even though there are several rules that fit almost 
equally well, there is a clear pattern that is qualitatively 
consistent with the relationships shown in Fig. 3. We are 
currently developing methods to summarize and visualize 
the results of exhaustive network search, for brevity here we 
will interpret “rule histograms”: the number of each of the 
27 possible rules that one of the input genes can take in each 
rule combination. For example, in Fig. 4, SIC takes the rule 
(3 1 1) 13/14 times, consequently it is a significant rule. 
 Fig. 5 shows the predicted CLB2 time series of the best 
fit rule (first line of Fig. 4) given the yeast cell cycle time 
series synchronized by cdc15 addition (used for network 

fitting), as well as data generated for cdc28, and alpha factor 
addition (see [12] for a detailed description of experimental 
protocols). The rule set has a good qualitative fit with the 
cdc28 and alpha factor time series (noting that the alpha set 
has several missing values and the magnitude of the 
response is highly sensitive to experimental conditions). 
Also, it should be noted that in fitting the rule set we have 
assumed the contribution of all input genes are equally 
weighted. 
 We have compared the results of our analysis with a 
supervised learning scheme described in [14]. In the analysis 
of [14], only two states of expression were considered, 
“under” and “over”, with thresholds inferred from the data. 
While both analyses generate predictions consistent with 
known biology, fuzzy gene network analysis is more 
sensitive to small changes in transcription level, includes 
more details of functional relationships, and consequently 
fuzzy analysis can pose potential alternative hypotheses that 
may be consistent with the nonlethality of certain cyclin 
mutations (e.g. CLB5-6). For example, in [14] no rules were 
found involving HCT1, which encodes a protein responsible 
for degrading Clb2. Hct1 acts posttranslationally on Clb2, 
and shows only small (but detectable) cycling expression 
levels that can be deemed too “insignificant” by statistical 
modeling techniques. However, the network search revealed 
significant rules for CLN3:HCT1 (1 3 3) corresponding to 
indirect relationships between Hct1 and Cln3 (Cln3 activates 
SBF and Hct1 degrades Clb2, an SBF inhibitor) responsible 
for driving the cell cycle. 
 
 

V.  CONCLUSION 
 
 We have shown preliminary success in analyzing 
simulated and actual data sets (i.e. yeast cell cycle data). As 
shown in Fig. 5, linear combinatorial fuzzy networks 
(unlike, e.g. Boolean networks) have sufficient resolution to 
accurately reproduce complex time series data sets, without 
using continuous parameters. In addition, we can model key 
biological details of yeast cyclin interactions. We are further 
developing our method in close integration with gene and 
protein expression experiments performed in our own 
laboratory. The most significant drawback of the fuzzy gene 
network modeling method is the computational complexity 
associated with exhaustive search; particularly when there is 
no connectivity network inferred from DNA sequence 
comparison and no simplifying structure can be imposed on 
the problem. Thus, we are currently exploring heuristic 
methods for combinatorial optimization (i.e. genetic 
algorithms), as well as integrating Bayes net methods with 
fuzzy logic representation of functional relationships. It is 
important to note that the gene network inference problem is 
not a classical inverse problem with a static data set. 

CLB2

CLN3
CDC20

SWI5
CLB5

SIC1
CLB2

CLN3
CDC20

SWI5
CLB5

SIC1

Fig. 3. Known relationships (positive, white boxes; negative, gray boxes) 
between yeast cyclins and the CLB2 gene. Includes both direct 
transcriptional relationships (CLB2 inhibits SIC1) and indirect 

relationships, i.e. expression during adjacent cell cycles (e.g. CLN2 is 
G1/S specific, CLB2 is G2/M specific). 

Err CLN3 SWI5 CDC20 SIC1 CLB5
1.773 1 1 3 1 3 3 1 2 3 3 1 1 3 3 1
1.774 1 1 3 1 2 3 1 3 3 3 1 1 3 3 1
1.777 1 2 3 1 2 3 1 2 3 3 1 1 3 3 1
1.809 1 1 2 1 2 3 1 3 3 3 1 1 3 3 1
1.810 1 2 2 1 2 3 1 2 3 3 1 1 3 3 1
1.811 1 1 2 1 3 3 1 2 3 3 1 1 3 3 1
1.824 1 2 3 1 2 3 1 3 3 3 1 1 3 2 1
1.826 1 1 3 1 2 3 1 2 3 3 2 1 3 3 1
1.826 1 2 3 1 1 3 1 3 3 3 1 1 3 3 1
1.835 1 2 3 1 3 3 1 1 3 3 1 1 3 3 1
1.846 2 1 3 1 3 3 1 2 3 3 1 1 3 3 1
1.848 1 2 3 1 3 3 1 2 3 3 1 1 3 2 1

Fig. 4. Best fit fuzzy network rules for CLB2. The first line of the rule 
table indicates that the CLN3:CLB2 rule is (1 1 3), the SWI5:CLB2 rule is 
(1 3 3), etc. The CLN3:CLB2 rule is read in English as “If CLN3 is Low 
(1) Then CLB2 is Low (1); If CLN3 is Medium (2) Then CLB 2 is Low 

(1); If CLN3 is High (3) Then CLB2 is High (3). 
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 Rather, biological system analysis must be treated as a 
dynamic reverse engineering problem, in which searching 
for the solution is continually assisted by optimal acquisition 
of new experimental data. As such, the methods developed 
for model-assisted experimental design in gene networks 
may have significant application for other network and 
related reverse engineering problems. 
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Fig. 5. Comparison of experimental ([10]) and predicted CLB2 yeast cell 
cycle time series assuming different synchronization methods. 




